
Dynamic Programming (linear) 
 

Step 1: Identify the sub-problem in words. 

Step 2: Write out the sub-problem as a recurring mathematical decision. 

Step 3: Solve the original problem using Steps 1 and 2. 

Step 4: Determine the dimensions of the memoization array and the 

direction in which it should be filled. 

Step 5: Code it! In recursive or iterative way. 

 

 

E-OLYMP 1560. Decreasing number There are three types of operations you can 

perform on an integer: 

1. If it's divisible by 3, divide it by 3; 

2. If it's divisible by 2, divide it by 2; 

3. Subtract 1. 

Given a positive integer n, find the minimal number of operations needed to 

produce the number 1. 

► Let f(n) contains the minimum number of operations to convert the number n to 

1. For example, 

 f(1) = 0, since we already have number 1; 

 f(2) = 1, perform operations 2 → 1; 

 f(5) = 3, perform operations 5 → 4 → 2 → 1; 

 f(10) = 3, perform operations 10 → 9 → 3 → 1; 

In the case of n = 10 it is better to subtract 1 first than to use the greedy idea and 

divide by 2. 

 

Consider the process of calculating the function f(n). 

 If we divide number n by 3 (if n is divisible by 3), then 

f(n) = f(n / 3) + 1 

 If we divide number n by 2 (if n is divisible by 2), then 

f(n) = f(n / 2) + 1 

 If we subtract 1 from n, then 

f(n) = f(n  – 1) + 1 

f(n)

f(n/2)f(n/3) f(i-1)

+1 +1 +1

f(6)

f(3)f(2) f(5)

+1 +1 +1

1 1 3
min

min = 1

2
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From the number n we can get one of three numbers: n / 3, n / 2 or n – 1. The 

number of operations for which each of these numbers we can be reduced to 1, equals to 

f(n / 3), f(n / 2) and f(i – 1) respectively. Since we are interested in the smallest number 

of operations, we have the relation: 

f(n) = min(f(n – 1), f(n / 2), f(n / 3)) + 1,  

f(1) = 0 

 

Moreover, if n is not divisible by 2 (or by 3), then the corresponding element (f(n / 

2) or f(n / 3)) is absent in the function min. For example, for n = 8 we have: 

f(8) = min(f(7), f(4)) + 1 

For n = 7 we get: 

f(7) = min(f(6)) + 1 = f(6) + 1 

 

The values of the function f(n) will be stored in the cells of array d[MAX], where 

MAX = 106 + 1. Fill the cells of array d from 1 to 106 according to the given recurrence 

relation. For example, the following table shows the values of d[i] for 1  i  11: 

 

i

d[i]

1

0

2

1

3

1

4

2

5

3

6

2

7

3

8

3

9

2

10

3

11

4
 

 

For example, d[10] = min(d[9], d[5]) + 1 = min(2, 3) + 1 = 3. It means that it is 

more efficient to subtract 1 from 10, rather than divide it by 2. 

 

Exercise. Find the values of d[i] for the next i: 

i

d[i]

12 13 14 15 16 17 18 19 20

 
 

E-OLYMP 1619. House robber You are a professional robber planning to rob 

houses along a street. Each house has a certain amount of money stashed, the only 

constraint stopping you from robbing each of them is that adjacent houses have security 

system connected and it will automatically contact the police if two adjacent houses are 

broken into on the same night. 

Given a list of non-negative integers representing the amount of money of each 

house, determine the maximum amount of money you can rob tonight without alerting 

the police. 

► Let’s number the houses starting from index one (i-th house contains ai money). 

Let f(i) be the maximum amount of money that can be robbed from houses with 

numbers from 1 till i-th.   

Then f(1) = a1, f(2) = max(a1, a2).  

To calculate f(i) we consider two cases: 
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 If the i-th house is robbed, then one can’t rob the (i – 1)-th house. In this case 

profit will be f(i – 2) + ai. 

a1 a2 ... ai-2 ai-1 ai

f(i - 2) ai+
 

 if the i-th house is not robbed, the profit will be f(i – 1). 

a1 a2 ... ai-1 ai

f(i - 1)  
So we have 

f(i) = max(f(i – 2) + ai, f(i – 1)) 

Store the values of f(i) in array res. The answer to the problem is the value of f(n) = 

res[n]. 

 

1 2 10 4

1 2 3 4 5

f(i)

i

ai 6

6 8 16 166
 

 

16

66

1 26

6 86

1 2 106

6 8 166

f(2) = 6 f(3) = max(f(2),f(1)+a3) = 

max(6,8) = 8

f(4) = max(f(3),f(2)+a4) = 

max(8,16) = 16

6

6

f(1) = 6

 
Let’s find f(3). If house 3 is not robbed, the income is f(2) = 6. If house 3 is robbed, 

we can rob first house with income f(1) = 6 plus income for the third house that equals 

to 2 (the total profit is 6 + 2 = 8).  

Let’s find f(4). If fourth house is not robbed, the income is f(3) = 8. If fourth house 

is robbed, we can rob the first two houses with an income of f(2) = 6 plus income for 

the fourth house which equals to 10. Equating the total profit to 16 (6 + 10 = 16). 

 

Exercise. Find the values of f(i) for the next input data: 

3 2 8 4

1 2 3 4 5

f(i)

i

ai 6 1 7

6 7

 
 

E-OLYMP 9036. Dice combinations Your task is to count the number of ways to 

construct sum n by throwing a dice one or more times. Each throw produces an outcome 

between 1 and 6. 

For example, if n = 3, there are 4 ways: 

 1 + 1 + 1 
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 1 + 2 

 2 + 1 

 3 

► Let f(n) be the number of ways one can get the sum n. Let the number k (1 ≤ k ≤ 

6) fell on the last throw. Then all throws except the last one should get the number n – k, 

which can be done in f(n – k) ways. Thus, we have: 

f(n) = f(n – 1) + f(n – 2) + f(n – 3) + f(n – 4) + f(n – 5) + f(n – 6) 

 

The sum n = 1 can only be obtained in one way, by rolling the dice once and 

getting 1 on it, so f(1) = 1. 

The sum n = 2 can be obtained in two ways: 1 + 1 and 2, so f(2) = 2. 

 

Let n = 3. We can: 

 get 3 with one throw; 

 get 2 with the last throw and get 1 with the rest throws, which can be done in 

f(1) = 1 way; 

 get 1 with the last throw and get 2 with the remaining throws, which can be 

done in f(2) = 2 ways; 
 

3

2f(1)

1f(2)

1 throw

1 throw

2 throws

3

21

12

111

 
 

Thus f(3) = 1 + f(1) + f(2) = 1 + 1 + 2 = 4. 

Similarly, for n ≤ 6 we have: f(n) = 1 + f(1) + f(2) + … + f(n – 1). 

 

Consider our recurrence again: 

f(n) = f(n – 1) + f(n – 2) + f(n – 3) + f(n – 4) + f(n – 5) + f(n – 6) 

Write the equation for f(n – 1): 

f(n – 1) = f(n – 2) + f(n – 3) + f(n – 4) + f(n – 5) + f(n – 6) + f(n – 7) 

From the last equation find the sum 

f(n – 2) + f(n – 3) + f(n – 4) + f(n – 5) + f(n – 6) = f(n – 1) – f(n – 7) 

and substitute it into the original recurrence: 

f(n) = f(n – 1) + f(n – 1) – f(n – 7) = 2 * f(n – 1) – f(n – 7) 

 

Compute the values of the function for n ≤ 6: 

f(1) = 1, f(2) = 2, f(3) = 4, 

f(4) = 1 + f(1) + f(2) + f(3) = 1 + 1 + 2 + 4 = 8, 

f(5) = 1 + f(1) + f(2) + f(3) + f(4) = 1 + 1 + 2 + 4 + 8 = 16, 

f(6) = 1 + f(1) + f(2) + f(3) + f(4) + f(5) = 1 + 1 + 2 + 4 + 8 + 16 = 32 



 

We got the equivalent recurrence: 
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Compute the values of the function f(n) for n ≤ 9. 

n 0

f(n) 1

2

2

3

4

4

8

5

16

6

32

7

63

8

125

1

1

9

248

 
For example  

f(8) = f(7) + f(6) + f(5) + f(4) + f(3) + f(2) = 125, 

f(9) = 2 * f(8) – f(2) = 2 * 125 – 2 = 248 

 

E-OLYMP 987. Nails Some nails are hammered on a straight plank. Any two 

nails can be joined by a thread. Connect some pairs of nails with a thread, so that to 

each nail will be tied with at least one thread, and the total length of all threads will be 

minimal. 

► Sort the nail’s coordinates in array а. Let dp[i] equals to the minimal total length 

of all thread, when any two nails starting from the first one (the nails are numbered 

starting from 1) till i-th are connected with the thread. 

If n = 2, both nails must be joined with the thread, so  

dp[2] = a2 – a1 

If n = 3, we must connect first nail with the second, and second with the third. So  

dp[3] = a3 – a1 

To add i-th nail one has two possibilities to join it with the thread: 

1) connect first i – 2 nails among themselves, the (i – 1)-th nail connect to the i-th. 

The total length of the thread for such connection equals to dp[i – 2] + a[i] – a[i – 1]. 

ii - 1i - 2

. . .

1

dp[i – 2]
ai – ai-1

 
2) connect first i – 1 nails among themselves, the i-th nail we connect to the (i – 1)-

th. The length of the thread equals to dp[i – 1] + a[i] – a[i – 1]. 

ii - 1

. . .

1

dp[i – 1]

ai – ai-1

 
Select the connection method where the total length of the thread is smallest. So 

dp[i] = min(dp[i – 2], dp[i – 1]) + a[i] – a[i – 1] 
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Sort the nail’s coordinates for the sample input: 0, 2, 4, 10, 12. For two nails dp[2] 

= 2 – 0 = 2. For three nails we must connect them all with the thread (each nail must be 

tied with at least one thread), so  

dp[3] = (4 – 2) + (2 – 0) = 4 

420

2 2

 
Let’s calculate the optimal length of the thread for 4 nails: 

dp[4] = min(dp[2], dp[3]) + 10 – 4 = 2 + 6 = 8 

420 10

2 6

 
For 5 nails the minimum possible length of the thread equals to 

dp[5] = min(dp[3], dp[4]) + 12 – 10 = 4 + 2 = 6 

420 10

2

12

2 2

 

2 4 10 12

1 2 3 4 5

dp[i]

i

ai 0

2 4 8 60
 

Exercise. Find the values of dp[i] for the next input data: 

4 5 8 10

1 2 3 4 5

dp[i]

i

ai 2 13

6

 
 

E-OLYMP 8596. Journey from west to east There are n cities standing on a 

straight line from west to east. The cities are numbered from 1 to n, in order from west 

to east. Each point on the line has its own one-dimensional coordinate, and the point 

closer to the east has a large coordinate. The coordinate of the i-th city is xi. 

You are now in city 1, and want to visit all cities. You have two ways to travel: 

 Walk in a straight line. At the same time, your level of fatigue will increase 

by a units each time you move a distance of 1, regardless of the direction. 

 Teleport to any point you want. Your fatigue level will increase by b units, 

regardless of teleported distance. 

Find the lowest possible level of fatigue, at which you will visit all the cities. 

► Consider some optimal (with a minimum level of fatigue) route to visit all cities. 

It can always be rebuilt so that the movement is carried out from left to right with visits 

to consecutive cities. For example the following route 
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can be converted to 

 
with the same level of fatigue. 

 

Let dp[i] be the the minimum level of fatigue with which you can reach city i from 

city 1 moving sequentially through cities from left to right. It is obvious that dp[0] = 0. 

You can get to the i-th city from the (i – 1) -th in two ways: 

 walk in a straight line. Then fatigue level will increase by a * (x[i] – x[i – 1]); 

 teleport. Then fatigue level will increase by b; 

 

Since overall fatigue should be minimized, it is necessary to choose the path for 

which the fatigue is minimum. In this way 

dp[i] = dp[i – 1] + min( a * (x[i] – x[i – 1]), b) 

 

Test 1. From the 1st city we go to the 2nd, after we teleport to the 3rd. At the end 

we go to the 4th. The fatigue level at the end will be 2 * 1 + 5 + 2 * 2 = 11, which is the 

lowest possible. 

2 5 71

a = 2

b = 5

1 2 3 4

2 * 1 = 2 2 * 2 = 4

5

 
dp[1] = 0; 

dp[2] = dp[1] + min( a * (2 – 1), b) = 0 + min( 2 * (2 – 1), 5) = 0 + 2 = 2; 

dp[3] = dp[2] + min( a * (5 – 2), b) = 2 + min( 2 * (5 – 2), 5) = 2 + 5 = 7; 

dp[4] = dp[3] + min( a * (7 – 5), b) = 7 + min( 2 * (7 – 5), 5) = 7 + 4 = 11; 

2 5 7

1 2 3 4

dp[i]

i

ai 1

2 7 110

a = 2

b = 5

 
 

Test 2. From city 1 we just go to all cities up to 7th. As a result, the fatigue level 

will be 84, which is the lowest possible. 

Test 3. Visit all cities, in any order, teleporting six times. The fatigue level will be 

12, which is the lowest possible. 

 

Exercise. Find the values of dp[i] for the next input data: 

3 6 10 11

1 2 3 4 5

dp[i]

i

ai 1 13

6

a = 2

b = 5

 
 



E-OLYMP 4051. Grasshopper Grasshopper lives in the teacher's room. It likes to 

jump on one dimensional checkerboard. The length of the board is n cells. To its regret, 

it can jump only on 1, 2, ..., k cells forward. 

Once teachers wondered in how many ways a grasshopper can reach the last cell 

from the first one. Help them to answer this question. 

► Let dp[i] equals to the number of ways for grasshopper to leap from the first cell 

to the i-th one. Set dp[1] = 1, dp[2] = 1. 

If 2 < i ≤ k, then its possible to get into the i-th cell from any previous one, so  

dp[i] = dp[1] + dp[2] + … + dp[i – 1] = 




1

1

][
i

j

jdp  

Let k be large, calculate dp[i] using this formula: 

dp[3] = dp[1] + dp[2] = 1 + 1 = 2, 

dp[4] = dp[1] + dp[2] + dp[3] = 1 + 1 + 2 = 4, 

dp[5] = dp[1] + dp[2] + dp[3] + dp[4] = 1 + 1 + 2 + 4 = 8 

 

You can notice that dp[i] = 2* dp[i – 1]. However, this formula can be obtained 

from the following considerations. From  

dp[i – 1] = dp[1] + dp[2] + … + dp[i – 2] 

follows that 

dp[i] = (dp[1] + dp[2] + … + dp[i – 2]) + dp[i – 1] =  

dp[i – 1] + dp[i – 1] =  2 * dp[i – 1] 

 

If i > k, then its possible to get into the i-th cell from any out of k previous, so  

dp[i] = 




1

][
i

kij

jdp  = dp[i – k] + … + dp[i – 1] 

Similarly, you can see that from the fact that 

dp[i – 1] = dp[i – k – 1] + … + dp[i – 2] 

follows that  

dp[i] = dp[i – k] + … + dp[i – 1] =  

(dp[i – k – 1] + dp[i – k] + … + dp[i – 2]) – dp[i – k – 1] + dp[i – 1] =  

2 * dp[i – 1] – dp[i – k – 1] 

 

For the given sample test n = 8 and k = 2 the state of dp array has the from: 

1 1

1 2

2 3

3 4

5 8

5 6

13 21

7 8

dp[i]

i

 
 

For n = 8 and k = 4 the array dp has the form: 

1 1

1 2

2 4

3 4

8 15

5 6

29 56

7 8

 k = 4, s = 8 
s = s – 1 + 8 = 15

s = s – 1 + 15 = 29
s = s – 2 + 29 = 56

dp[i]

i
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Exercise. Fill dp array for n = 8 and k = 3. 
1 2 3 4 5 6 7 8

dp[i]

i

 
 

E-OLYMP 798. Platforms In older games one can run into the next situation. The 

hero jumps along the platforms that hang in the air. He must move himself from one 

side of the screen to the other. When the hero jumps from one platform to the 

neighboring, he spends |y2 – y1| energy, where y1 and y2 are the heights where these 

platforms hang. The hero can make a super jump that allows him to skip one platform, 

but it takes him 3 * | y3 – y1| energy. 

You are given the heights of the platforms in order from the left side to the right. 

Find the minimum amount of energy to get from the 1-st (start) platform to the n-th 

(last). Print the list (sequence) of the platforms that the hero must pass. 

► Let e[i] contains the minimum amount of energy sufficient to get from platform 

1 to platform i. Obviously, e[1] = 0 (to get from the first platform to the first is zero 

energy), and e[2] = |y2 – y1|, since the second platform can only be reached from the first 

one. 

In cell p[i], we’ll store the number of the platform from which we jumped to the i-

th. Initially, we set p[1] = -1 (initially we are on the first platform), and also p[2] = 1. 

eiei-1ei-2

yi
yi-1

yi-2

ei-1 + |yi – yi-1|

ei-2 + 3|yi – yi-2|

 
To the i-th platform (i ≥ 3) you can jump either from (i – 1) -th, spending e[i – 1] + 

|yi – yi-1| energy, or from (i – 2)-th, having made a super jump and spending e[i – 2] + 

3·|yi – yi-2| energy. So 

e[i] = min( e[i – 1] + |yi – yi-1| , e[i – 2] + 3·|yi – yi-2| ) 

 

If to the i-th platform the jump is performed from (i – 1) -th, then set p[i] = i – 1. If 

from (i – 2) -th, then we set p[i] = i – 2. To find the number of platforms on which 

jumps from the first to the n-th were performed, one should walk from the n-th platform 

to the first one each time moving from the i-th platform to p[i] -th. 

 

Let we have 6 platforms with heights 4, 6, 15, 5, 10, 12. 
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e3

4

e2

6

e1

15

e4

5

e5

10

e6

12

 
 

Calculate the spended energy when jumping: 

e[1] = 0, p[1] = -1; 

e[2] = |6 – 4| = 2, p[2] = 1; 

e[3] = min(e[2] + |15 – 6|, e[1] + 3 * |15 – 4|) = min(11, 33) = 11, p[3] = 2; 

e3

11

4

e2

2

6

e1

15

e4

5

5

e5

10

e6

12

e3 + |5 – 15| = 21

e2 + 3|5 – 6| = 5

 
e[4] = min(e[3] + |5 – 15|, e[2] + 3 * |5 – 6|) = min(21, 5) = 5, p[4] = 2; 

e[5] = min(e[4] + |10 – 5|, e[3] + 3 * |10 – 15|) = min(10, 26) = 10, p[5] = 4; 

e[6] = min(e[5] + |12 – 10|, e[4] + 3 * |12 – 5|) = min(12, 26) = 12, p[6] = 5; 

yi

ei

pi

4 6 15 5 10 12

0 2 11 5 10 12

-1 1 2 2 4 5

i 1 2 3 4 5 6

 
To restore the path, move from the final (6-th) platform back along the indexes of 

p[i]: 

6
p[6] = 5

5
p[5] = 4

4
p[4] = 2

2
p[2] = 1

1
 

The list of platforms to go through is as follows: 

1, 2, 4, 5, 6 

 



Exercise. Fill the arrays with the next input data. 

yi

ei

pi

8 4 1 5 12 3

i 1 2 3 4 5 6

 
 


